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An algorithm is described for a solution to the 3D Poisson Vlasov equations for ions 
extracted from a plasma. A variational formulation of Poisson’s equation using isoparametric 
finite elements leads to a band matrix which is solved by a modified Gauss-Cholesky method. 
A semi-implicit method is described for the inclusion of nonlinear plasma electrons allowing 
an explicit solution of the extraction sheath. An intrinsically 3D example is shown. 

I. INTRODUCTION 

Ion beam extraction from a plasma is of interest in high energy neutral beam 
injectors for heating confined plasma. The optics of such ion beams have been 
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amenable to theoretical treatment in two dimensional cylindrical or slot geometries 
[ 11. These 2D considerations have not been without influence on accelerator design 
[ 2, 31. Nevertheless some intrinsically 3D phenomena need elucidation. Among these 
are cylindrical geometry beamlet steering by aperture displacement, beamlet-beamlet 
interaction, end effects in slots and transverse magnetic block direct-recovery devices. 

Beamlet steering by aperture displacement in cylindrical geometry is susceptible to 
paraxial examination [4] thus relegating a 3D treatment to examining second order 
effects 151, with a qualitative examination of these second order effects available from 
a slot geometry calculation [3]. Inadvertent steering in cylindrical geometry by 
source plasma density variations is a 3D problem where no first order analysis is 
available, but qualitative information is again available for slot geometry. 
Beamlet-beamlet interaction in cylindrical geometry is also susceptible to a first 
order analysis [6] and slot qualitative analyses to all orders. 

Slot end effects, however, do not fall into these categories since neither a paraxial 
analysis nor an alternate geometry conliguration is claimed to represent the situation. 
In addition several important new lines of neutral beam generators are being 
constructed utilizing slots where the end effects are unknown. This is a principal 
reason for developing a 3D algorithm for ion beam optics. An alternative reason is to 
examine transverse magnetic blocking direct recovery experiments [ 71. 

II. PHYSICAL PROBLEM 

The acceleration region of the neutral injector problem reduces to the simultaneous 
solution of two time-independent partial differential equations. One of these is 
Poisson’s equation, 

q = - $ (q - 4, expbQo - 4)lkTe1)9 

where 

e is the electronic charge, 
E, is the permittivity of free space, 
k is Boltzmann’s constant, 
T, is the electron temperature, 
4, is the electric potential at the center of the source plasma, 
n,, is the electron number density at the center of the source plasma, and 
n, is the ion number density. 

The other equation is Vlasov’s equation, 

(1) 

v. Vf+Z(-V)) .+I, (2) 
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where 
q is the charge of an ion, 
m is the mass of an ion, and 
f;: = fi(r, v) is the ion distribution function. 

The two equations are connected by the ion density ni, which is given by 

n, = duA(r, v). 
I 

(3) 

Direct solution of the Vlasov equation is, in general, extremely difficult, so we chose 
to solve it indirectly by an orbit-tracing technique. 

The procedure used is almost identical to one used in a number of other attacks on 
the problem [8-lo]. 

The solution steps are: 

(1) With zero space charge (i.e., ni = n,, = 0), solve Eq. (1) in the region of 
interest. 

(2) Using the potentials obtained, trace ion trajectories through the volume. 
(3) Use the trajectory information to calculate the amount and distribution of 

space charge, ni. 
(4) The space charge obtained in (3), together wth the electron contribution 

be0 e -etmo-mWkre) becomes the inhomogeneous term for the new solution of Poisson’s 
equation. 

(5) Return to (2), and continue until the solution converges. 

Due. to the nonlinear form of Eq. (l), it is evident that an iterative procedure will 
be needed to find the solution. Equation (1) is rewritten using 

us = eQo - bsWe9 

where 4, is the potential at the classical sheath edge as defined by Self [ 111 and ls is 
the normalized potential drop between the center of the source plasma and the sheath 
edge. 

Using these, we have, for Eq. (l), 

(5) 

where A; = sok7’,l(n,,e2) is the electron Debye length in the center of the source 
plasma. 

Let u in Eq. (5) be the value at the nth iteration, and u’ be the value at iteration 
n+ 1. 
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Then we have 

a*~’ a*241 a*d 1 . ni -- 
ax2 + a$ +F=~ n,, ( 

-U’ -77s --e e 
) 

. 

Now 

e -” can be expanded to first order in a Taylor series, viz., 
e-u’ = e-u - e-u du (7) 

Approximating du by (u’ - u), we have 

e -u’= --u e - e- yu - u). (8) 

Then we may rewrite Eq. (8) as 

e -” + u’e-” = epu + ueeu = epU( 1 + u)e 

Thus Eq. (6) becomes 

(6) 

(9) 

a*241 a% &I e-ue-v~ 1 
a2 + ay* + a2 

u’ =- 
( 

ni - - -- 
A:, 

n:, ~-e-UeC”s(l+u) . 
1 

(10) 

Note that the left-hand side (of Eq. (10)) includes both u and u’, while the right-hand 
side contains only u. In this form, iterations may be performed until u’ and u agree to 
within some error estimate. 

III. FINITE ELEMENT SOLUTION OF NONLINEAR POISSON EQUATION 

The boundary conditions for the three-dimensional problem can be somewhat 
formidable. To solve Eq. (10) in a general three-dimensional region, the finite element 
method was chosen [ 121. 

The finite element method requires an integral statement of the problem. We 
introduce an approximate solution p N u and choose the method of weighted 
residuals. That is, define a residual error, R, due to the approximation 

R=V*p’- 

and require its weighted integral, I, to vanish, 

(11) 

I= WRdV=O. 
I 1) 

(12) 
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For a Galerkin formulation, one assumes the weighting function to 
to the condition that the weights vanish on the boundary, so that, 

be W=p’, subject 

z= 

i[ 

vp - 
e-Pe-b 

V G 
p’-$ ?-e-pe-V$l +p) 

D ( )I 
p'dV=O. (13) 

e0 

Note that in Eq. (13) the first terms involving the Laplacian involve second 
derivatives and would involve C’ continuity of the approximation just to calculate p'. 
This is undesirable. Noting that 

(14) 

we use this in Eq. (13) to get 

_ e-Pe-qs( 1 + p) ) 1 lfv+p (g) dS=O. (15) p’ 

Now since the weighting function was chosen to vanish on the boundaries and apt/an 
will vanish on Neumann boundaries due to symmetries in the problem, we have no 
contribution to the solution from the integral over the surface. 

Then we have, 

Jv ] (g)‘+ ($J2 + ($g2 + ‘-y @‘)j dV 
1 . -ni =- n:, v ~+e-pe-vs(l+p) p'dV. 

j I I 
(16) 

Introducing the standard finite element procedure, assume that the total integral is the 
sum of the element integrals, i.e., 

z= 2 z,. 07) 
i=l 

With a typical element the dependent variable is approximated by interpolation 
equations of the form 

IXN NXI 

P'(XY Jhz)= W(x, YvZ)l{Pel, 

where the {p'} are the N nodal values of p, and [He] contains the N interpolation 
equations of the element. The integral formulation requires global derivatives such as 
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ap/ax, etc., Within a typical element this would be approximated by employing 
Eq. (18). That is, 

ape aH’ 
aX= ax [ I 

- {P'l, etc., (19) 

so that all quantities are expressed in terms of the unknown nodal potentials, (p'}. 

Letting [H] and [HI,, denote the matrix of interpolation functions and their x 
derivative, respectively, Eq. (16) for one element becomes 

I ( {P:}' 
“, 

[HI?% + [Hl:,IHl,, + [Hl:[Hl,z + ‘-$-” LHITIHl) IphI dVe 
D 

= $- 
I ( 

(p'}' v 

c 

7 + e-pe-Vs(l t p)) dV,. 

I?0 

We may write this as 

(20) 

P-1) 
where 

[Se1 = jve (IHlT,[Hl,x •t- [HI%% + [Hl~[Hl,z + ‘-;-” [Hl’[Hl) dve, (21a) 

{Ce}=g,f [HIT (:tePe-Vs(l tp))dY,, 

D "e I20 
(2lb) 

and {p:} are the new element nodal values. 
Now the solution over the total volume is given by (17) so that 

and 

{P/l= 5 {PLl. 
I=1 

GQC) 

This process of assembly is carried out by bookkeeping routines as in most finite 
element programs. Note that values for p from previous iterations can be obtained by 
interpolation from previous nodal values if so desired. 
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It is usual to perform the integrations in Eqs. (21a)-(2 lb) by quadratures in local 
coordinates [ 121, especially when isoparametric interpolation functions are chosen for 
the [HI’s in Eq. (18). 

Since the partial derivatives are global derivatives, they must be converted to local 
derivatives, i.e., 

p,q = [J]-‘{&Jq, 

where 

[a, V] denotes the global derivative of a basis function, 
[a, V] denotes the local derivative, and 

var ia% 
’ is the inverse of the Jacobian of the transformation from global to total 

Then sV, [H]T,[H,,] dV, can be expressed approximately as 

1 wi lJil laxHIT LaxHli 
i=l 

where 

Wi are the tabulated quadrature weights, 
]Jil is determinate of the Jacobian at the point i, 
ZVQP = number of quadrature points, and 
[a,ZIli are global derivatives of local basis functions at point i. 

Now using (23), 

(24) 

we can evaluate the global derivatives in terms of local derivatives of the inter- 
polation functions. 

For polynomials of known order, ZVQP can be selected to evaluate the integral. The 
minimum allowable value of NQP is that which exactly integrates IJ]. 

Once the element contributions to the system square matrix [S] in Eq. (21a) and 
the system column matrix [C] in Eq. (21b) have been calculated and assembled as 
given by Eq. (22a) and (22b), the resulting band matrix can be factored using a 
modified Gauss-Cholesky algorithm. Back substitution using the column matrix [C] 
yields the desired column matrix of solutions (p’ } (Eq. (22~)). 

Since the procedure is iterative and because of the Taylor expansion for the 
electron term, this assembly and factorization must be done for each iteration of the 
electron term. 
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c 
SET n; /n,,=O 
NlTER= 1 AND 
pi=o.v’i 

OUTPUT STATISTICS 
PLOT DATA, AND 

RESTART INFO 

FIG. 1. Flowchart for 3D coupled Poisson-Vlasov code. 
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0 1 2 3 4 5 

MAJOR ITERATIONS 

FIG. 2. Convergence of the root mean square and envelope divergence angles for a sample finite 
slot. 

IV. VLASOV MODELING 

After a set of potentials is found such that U’ N U, ions are propagated through the 
volume using 

a = -eQu/m, (26) 

where Vu is determined using Eq. (23). The electric field produced by the potentials is 
assumed constant over a small volume =dxdydz. 

0’ 
0 2 3 4 5 

MAJOR ITERATIONS 

FIG. 3. Number of iterations of electron term required to converge nonlinear Poisson equation as a 
function of major ion iterations for the geometry illustrated in Fig. 6 (0 point was greatly over- 
converged). 
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Once the acceleration is known, the ions are moved along a parabolic path to a 
new location, z’ = z + AZ. The charge carried by the ion is deposited at this location 
using the element interpolation functions [ 121 for use in the calculation of the 
potential upon completion of all ion trajectories. 

The process of moving the ions through the electric fields is iterated on until we see 
optical convergence; that is, the optical properties of the beam remain stable over 
several iterations of charge-deposition and Poisson solution. Thus, the major 

a 

1 

FIG. 4a. Side view of the central region of a finite slot solution (major iterations increase 
downward). 
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FIG. 4b. Side view of all orbits for a finite slot in region of plasma electrode with corresponding 
emittance diagrams (major iterations increase downward). 
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FIG. 5. A comparison in the extractor region of a 2D result (top) for an infinite slot with the 3D 
finite slot (bottom) at the symmetry plane. 
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FIG. 6. The finite element mesh for the finite slot. The electrodes are on the top and the lower right- 
hand side. 

iterations (or the ion tracing, charge deposition) are alternated with several minor 
iterations of solving Eq. (10) to obtain a consistent electric field for the new ion 
density function. A flow chart showing this procedure is shown in Fig. 1. 

V. RESULTS 

In Fig. 2 we show a plot of the root mean square beam divergence angle versus 
major iteration number for a three-dimensional solution of a finite slot. The 
computational effort done in solving each major iteration is characterized by the 

FIG. 7. Perspective view of all ion orbits with superimposed electrodes. 
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FIG. 8. Side view of all orbits in a tinite slot. (Potentials are at symmetry plane.) 

number of minor iterations per major iteration. A plot of the number of minor 
iterations against the major iterations is shown in Fig. 3. The number of minor 
iterations is a function of the convergence parameter for the potentials in Eq. (10). 
For this example, it was chosen such that good agreement with the 2D results 
described below would obtain. 

In Fig. 4, we see the rapid formation of a stable sheath with significant details 

FIG. 9. Top view of all orbits in finite slot. 
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visible after only a few iterations. This is the first finite element explicit solution for 
the sheath in either two or three dimensions; there is one other explicit sheath solver, 
and that is a 2D finite difference algorithm [ 11. Both of these algorithms converge for 
arbitrary perveance. Other ion extraction algorithms must use an emitting surface 
that is of the same dimensionality as their solution and is arbitrarily specified [8, lo]. 

The solution time for a given problem is greatly influenced by mesh size since the 
computational time for the Poisson solution goes as W*, where W is the half 
bandwidth of the square matrix [S]. Also the orbit tracing time depends upon the 
number of cells traversed and the number of orbits run. Our present runs are made 
using 2433 nodal points, in 416 elements leading to a half bandwidth of 193 with 
2433 system equations and 20 element degrees of freedom. During each major 
iteration, 400 ion orbits are traced through the device. The number of nodal points 
and trajectories required are determined by convergence tests and are limited by 
computer memory and CPU time. The parameters chosen were sufficient for 
reasonable agreement with the 2D work described below. 

In Fig. 5 we show a comparison of a converged solution using the 2D finite 
difference code at ORNL versus the 3D on a LBL-TFTR infinite slot [ 131. While 
these codes solve Eqs. (I), (2), and (3) in totally different fashions, we obtain good 
agreement in the 2D limit. In Fig. 6 we show the finite element mesh of a slot design 
with square ends. In Fig. 7 is a preliminary view of the orbits for a converged 3D 
solution with Fig. 8 giving a side view of the orbits through the device while Fig. 9 
gives a top view. As can be seen in Figs. 7-9, the ends of the electrodes have an effect 

ELECTRODES 

FIG. 10. Illustration of slot emd ‘near extraction electrode lntrusi~ of sbutb into corner produces 
3D effects on divergeme angles. 
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upon the ion beam. In Fig. 10, we show the plasma sheath at the first electrode, 
where the corner effects are clearer. A quantitative study of this effect as a function 
of several controlling variables is the subject of future work. 
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